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ABSTRACT

Here we study the low-resolution visual recognition problem.
Conventional methods are usually trained on images with
large ROIs (regions of interest), while the regions and insider
images are often small and blur in real-world applications.
Therefore, deep neural networks learned on high-resolution
images cannot be directly used for recognizing low-resolution
objects. To overcome this challenging problem, we propose
to use the teacher-student learning paradigm for distilling
useful feature information from a pre-trained deep model on
high-resolution visual data. In practice, a distillation loss
is used to seek the perceptual consistency of low-resolution
images and high-resolution images. By simultaneously opti-
mizing the recognition loss and distillation loss, we formulate
a novel low-resolution recognition approach. Experiments
conducted on benchmarks demonstrate that the proposed
method is capable to learn well-performed models for rec-
ognizing low-resolution objects, which is superior to the
state-of-the-art methods.

Index Terms— Low-Resolution Recognition, Deep Con-
volutional Networks, Teacher-Student Paradigm;

1. INTRODUCTION

The recent success of deep neural networks has largely
boosted the computer vision applications such as visual
recognition [1, 2, 3, 4], person re-identification [5], face
recognition [6, 7]. Usually, most of visual recognition ap-
proaches are learned and conducted on datasets with some
certain assumptions, especially, the region of interest (ROI)
corresponding to the desired object is often large enough
(e.g., the size of ROI of each object in LFW dataset [8] is
larger than 16 x 16). However, in real-world applications the
regions of desired objects (e.g., faces of pedestrian may be
low-resolution (LR) in surveillance video) may be relatively
small and blur, which contain less information and have more
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noise. Therefore, directly applying models trained on high-
resolution images cannot achieve acceptable performance on
these low-resolution images. In addition, the cost of replacing
existing low-definition cameras with high-definition devices
is very expensive. Therefore, effective methods for learn-
ing new recognition models suitable for very low-resolution
recognition (VLRR) problem [9] is urgently required.

To overcome the aforementioned problems, a number of
approaches for recognizing low-resolution images have been
proposed recently. In particular, Chu et al. [10] proposed
a coupled mappings methods using cluster-based regular-
ized simultaneous discriminant analysis to recognize low-
resolution objects. Zhang et al. [11] developed a distance
metric learning algorithm for recognizing a low-resolution
human face by projecting high-resolution (HR) and low-
resolution images into a unified space which utilizes coupled
marginal discriminant mappings. Lu et al. [12] proposed
the deep coupled ResNet model, which considered not only
the discriminability of HR and LR features, but also the sim-
ilarity between them. Wang et al. [9] took advantage of
super resolution, domain adaptation, and robust regression,
and formulated a dedicated deep learning method. Although
these methods have made tremendous efforts for enhancing
the performance of low-resolution image recognition, such
methods did not utilize information from models learned on
high-resolution images.

On the other side, a possible way to solve the VLRR
problem is to utilize the visual super-resolution (SR) tech-
nique [13, 14, 15, 16], which receives a low-resolution image
and then outputs a high-resolution image through series of
transforms for approximating original high-resolution im-
ages, which probably can be easier recognized by original
models. Dong et al. [13] proposed the SRCNN method,
which directly learned an end-to-end mapping between the
low-resolution and high-resolution images. Kim et al. [14]
presented a highly accurate single-image super-resolution
method called VDSR which learns residuals only and uses
extremely high learning rates enabled by adjustable gradient
clipping. Shi et al. [16] proposed a CNN architecture called
ESPCN where the feature maps were extracted in the LR
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Fig. 1. The schematic of the proposed feature distillation
method for recognizing LR images. Best viewed in color.

space. They proposed a sub-pixel convolution layer which is
capable of super-resolving LR data into HR space with very
little additional computational cost. Ledig et al. [15] pre-
sented SRGAN, a generative adversarial network (GAN) for
image super-resolution (SR). It is the first framework capable
of inferring photo-realistic natural images for 4x upscaling
factors. Although high visual quality images can be generated
by these methods, the details in them are actually different
to that in the original images, which cannot provide enough
useful information for the subsequent recognition task.

Although a variety of methods have been proposed for ad-
dressing the low-resolution visual recognition problem, the
information in high-resolution images has not been fully in-
vestigated. To this end, this paper proposes an effective ap-
proach for recognizing low-resolution visual objects by ex-
tracting useful information from the model trained on high-
resilution images to seek the perceptual consistency of these
images, as shown in Fig.1. In the first stage, we train the
teacher model with HR images using corresponding labels.
Then, a student model is established for recognizing low-
resolution images by minimizing two objectives, i.e., the Eu-
clidean distance between features of LR model and HR model
and the cross entropy loss. Since features of HR images are
easier to be correctly classified than those of LR images, mak-
ing their features similar can significantly increase the recog-
nition accuracy of LR images. Experimental results on bench-
mark datasets and deep models demonstrate the superiority of
the proposed algorithm.

2. METHODS

2.1. Peliminary

In the setting of very low-resolution recognition problem, we
have LR images {I!"}, HR images {I/'"}, and labels {y;}
in the training stage, and make prediction only based on LR
test images during testing. In practice, the CNN model Ny g
trained on HR images performs much better than models N7
trained on LR images, that is to say, the HR image features
extracted from HR model are more discriminative. Thus, the
motivation of this paper is to use the discriminative features

extracted from HR model to help the training of LR model
Nig.

Recently teacher-student learning paradigm is very popu-
lar, i.e., directly learning a student network with the indication
of a teacher network which consists of more valuable infor-
mation [17, 18, 19, 20]. Many techniques have been devel-
oped using the teacher-student learning paradigm. [21] pro-
posed representational distance learning, a stochastic gradi-
ent descent method that improved classification performance
by minimizing the difference between the pairwise distances
between representations of teacher and student models at se-
lected layers using auxiliary error functions. [22] proposed to
combine the knowledge of multiple teacher networks in the
intermediate representations to train a thin deep student net-
work. [23] proposed to minimize the Euclidean distance be-
tween features extracted from student and teacher networks.

Considering that the original models learned on high-
resolution images cannot directly capture the distinctive fea-
tures from low-resolution images, which can be definitely
used for guiding the training procedure of the network for
recognizing LR images. Therefore, we propose to use the
teacher-student learning paradigm for enhancing the perfor-
mance of N7 . Inspired by FITNETS [18], we propose that
using a model trained with high-resolution images as teacher
model to indicate the training of student model with low-
resolution images in order to make the performance of the
student model close to that of the teacher model. In the view-
point of data augmentation, HR images can be considered as
auxiliary information for model training. Using HR images
in addition to LR images is a kind of data augmentation and
helps to model performance. The framework of the proposed
method is shown in Fig.1.

2.2. Deep Feature Distillation

One of the most severe problems of low-resolution recogni-
tion problem is the lack of labeled low-resolution images. To
prepare a LR image, we first down-sample the original im-
age, and then we up-sample it as a LR image to match the
size of the model input. The original image is considered as a
HR image and it loses information during the period of down-
sampling.

In the training stage, we first use HR images to train the
teacher model with softmax loss. The teacher model is used
to guide the training of student mdoel for LR images. For
model simplicity, we choose the same basic architecture for
the teacher model and student model, such as AlexNet [1],
VGG-16 [24], and ResNet-18 [2]. And we denote the teacher
and student deep nested functions up to their last feature lay-
ers as fi(-) and fs(-) respectively. After getting pre-trained
models, we fine-tune the student model following the indica-
tion of the teacher model with frozen weights.

We propose to make the output feature f4(I!") of the stu-
dent model close to the feature f;(I/'") of the teacher model,



thus we use the Euclidean distance (i.e. square error) between
them as the distillation loss:

1
Laistillation = §||fs(lzlr) - ft(ILhr)”g (1)

The loss is used for letting the two features stay in the same
domain and get close to each other. Training two models sep-
arately makes the feature extracted by them stays in different
domains. Adding the distillation loss here can efficiently help
the extracted feature of student model turn to the domain of
teacher model.

Softmax loss is also used to train the student model:

p; =softmax(f,(I'")W +b), 2)
= —yi (log(p))", 3)

where softmax(-) is the softmax function, W € R¥*¢ and
b € R are the weight matrix and bias vector of the last fully
connected layer, d is the feature dimension and C'is the num-
ber of categories. p; is the predicted probability vector and y;
is the true label vector of image 1.

Combining the recognition loss and distillation loss, we
train the student model parameters by minimizing the follow-
ing loss function:

Lrecognition

L= Lrecognition + )\Ldistillationa @

where )\ is the hyper-parameter for balancing the recognition
loss and distillation loss. Note that the teacher model is fixed
in this step, and the loss will only influence the training of
the student model and make no influence to teacher model.
The model can be trained via standard back-propagation and
stochastic gradient descent. Alg. 1 summarizes the proposed
method for training the CNN model to accurately recognize
LR images, namely DFD (deep feature distillation).

Algorithm 1 DFD for Low-Resolution Image Recognition

Input: Training image pairs {I/"} and {I"}, and their cor-
responding ground-truth labels {y; }.
Module 1: Prepare the teacher model.
Train the teacher model Ny with all the HR images
{I}"} and corresponding labels {y;};
Module 2: Learn the student model.
repeat
Rondomly select a batch of image pairs {7/"} and {I!"}
and coresponding ground-truth labels y;;
Input them to N7 g and Ny g, respectively;
Update paramteres in N, g after back-propagation;
until convergence
Output: The optimized student network N7z

3. EXPERIMENTS

In real-world setting, most of low-resolution recognition
methods directly recognize subjects from LR images, without

Table 1. Top-1 accuracies (%) of different methods on
CIFAR-10 and SVHN datasets, respectively. Base network
without DFD stands for the result of using only LR images to
train.

Methods CIFAR-10 SVHN

8x8 [ 16x16 [ 8x8 ] 16 x 16

AlexNet 64.08 [ 69.10 | 81.81 | 87.77

DFD (AlexNet) | 66.23 | 71.60 | 81.97 | 8835

VGG-16 7841 | 88.02 | 90.40 | 95.52

DFD (VGG-16) | 79.97 | 89.35 | 9111 | 95.90

ResNet-18 79.86 | 89.12 | 90.45 | 95.55

DFD (ResNet-18) | 81.26 | 90.41 | 92.07 | 96.02

any HR images. Specifically, in the training stage we intro-
duce HR images as auxiliary information for model training
by assuming that each training image has both LR and HR
versions available. In the testing stage, only LR images are
fed into the model for prediction.

3.1. Datasets

The CIFAR-10 dataset [25] consists of 60000 32 x 32 color
images in 10 classes, with 6000 images per class. Since the
CIFAR-10 dataset does not provide low-resolution images,
We first down-sample the original image by a factor s for LR
images of 32/s x 32/s. Then we resize them back to 32 x 32
used as the LR images in the experiment.

The SVHN dataset [26] is proposed as a large and real-
world benchmark. The dataset contains 73257 digits for train-
ing, and 26032 digits for testing, including 10 classes, 1 for
each digit. We process the data in the procedure similar to the
CIFAR-10 dataset.

3.2. Implementation Details

We implement our model using PyTorch package [27].
AlexNet [1], VGG-16 [24], ResNet-18 [2] are used as our
backbone networks since these models are classical models
for recognition task. SGD optimizer with momentum is used
to update the weights. We train the model for 100 epochs
with the batch size of 128. We use a momentum of y = 0.9
and weight decay of 5e — 4. Dropout and batch normaliza-
tion are also used. We adopt random crop and flip for data
augmentation in train set. The hyper-parameter A is tuned in
{0.1,0.2,0.5,1,2,5,10}. All the experiments are conducted
on a NVIDIA Pascal TITAN X GPU.

3.3. Performance on Different Backbone Networks

DFD is general to any CNN architecture, i.e, AlexNet, VGG-
16, and ResNet-18. Table 1 shows the performance of meth-
ods with different backbone networks under different reso-
Iution (8 x 8,16 x 16). From the results, DFD improves



the performance with different base networks with a signif-
icant margin, which verifies the superiority of the proposed
method.

3.4. Impact of Hyper-parameter

The hyper-parameter A in our method is to balance recog-
nition loss and distillation loss. We conduct experiments in
the CIFAR-10 dataset and tune A\ in {0.1,0.2,0.5,1,2, 5, 10}.
The resolution of LR images here is 8 x 8. The performance
of different methods are shown in Fig. 2. From the results,
DFD always outperforms the corresponding backbone net-
works which implies that DFD performance is steady while
the hyperparameter A changes. And we can obtain the best
performance around A = 2, which is a good trade-off point
for predicting labels and turning extracted features of student
model to that of teacher model.
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Fig. 2. Influence of hyper-parameter A: the top-1 accuracies
(%) with different base networks w.r.t. \. Best viewed in
color.

3.5. Comparison with Super-Resolution Based Methods

In order to demonstrate the superiority of the proposed
method, we further compare our method with the typical
super-resolution methods for recognizing low-resolution im-
ages in the CIFAR-10 dataset.

We firstly use these methods to transfer the original low-
resolution images (with resolution of 8 x 8) to high-resolution
images (i.e. 16 x 16), and then we directly use the ResNet-
18 as base model to train and test the new images. Some
examples of the generated SR images by exploiting super-
resolution techniques are shown in Fig.3. Although these SR
images contain much more texture and color details than LR
images, we cannot directly evaluate the practical benefits of
these generated information.

Thus we apply recognition techniques on the produced
images for recognition task. Table 2 shows the performance
comparison between our method and super-resolution based

HR-baseline
LR-baseline
ESPCN
SRGAN
VDSR

Fig. 3. Image examples of the super-resolution method con-
ducted on CIFAR-10. Best viewed in color.

methods. HR-baseline stands for the results of using only HR
model to train and predict for HR images. LR-baseline stands
for the result of using only the LR images to train and predict
for LR images. From the results in Table 2 and Fig.3, we find
that super-resolution techniques are able to generate pleasing
images for human eyes, but the generated images are useless
when directly used for improving the performance of image
recognition. The SR images produced by the super-resolution
techniques are not real images and the generated details in
images are irrelevant to classification task, which may ex-
plain why directly using super-resolution techniques cannot
improve the recognition performance. In contrast, DFD can
improve the performance by a large margin, indicating the
feature distillation is efficient for VLRR problem.

Table 2. The top-1 accuracies (%) of our method and super-
resolution based methods on the CIFAR-10 dataset.

Model | Accuracy
HR-baseline 93.38
LR-baseline 79.86

VDSR [14] + ResNet-18 80.00
ESPCN [16] + ResNet-18 79.41
SRGAN [15] + ResNet-18 79.05

DFD (ResNet-18) 81.26

4. CONCLUSION

In this paper, we study the low-resolution problem and present
a novel deep feature distillation framework for recognizing
very low-resolution images by exploiting the teacher-student
learning paradigm. In practice, the student model for LR im-
ages can inherit useful information from the teacher model
learned on their original HR images. Thus, our deep fea-
ture distillation method can improve the performance of stu-
dent model. The effectiveness of the proposed methods is
validated on two benchmark datasets over the state-of-the-art
methods. Moreover, our method can be applied to other com-
puter vision tasks, such as denoising, deblurring, efc.
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